¹⁰BE, ²⁶AL, AND ⁵³MN IN MARTIAN METEORITES. C. Schnabel^{1,*}, P. Ma¹, G.F. Herzog¹, T. Faestermann², K. Knie², and G. Korschinek² ¹Dept. Chemistry, Rutgers Univ., New Brunswick, NJ 08854-8087, ²Fakultät für Physik, Technische Universität München, 85748 Garching, Germany, *Present address: ETH Hoenggerberg, Inst. Particle Physics, CH 8093 Zurich, (schnabel@particle.phys.ethz.ch)

Introduction: Cosmic-ray exposure ages of martian meteorites help determine how many separate events brought meteorites from Mars to Earth. The activities, A, of cosmogenic radionuclides give cosmic-ray exposure (CRE) ages (T) when we know 1) the terrestrial age, t, of the meteorite; 2) the production rate, P, of the nuclide; and 3) that the period of exposure did not last more than ~3 halflives of the nuclide measured. We then have T = -Ln $(1-Ae^{\lambda t}/P)/\lambda$, where λ is the decay constant. The CRE ages of many martian meteorites [1,2] approach or exceed the bound of ~3 half-lives for the radionuclides most commonly determined. With its longer half-life of 3.7 My, ⁵³Mn records irradiation times up to ~11 My. Advances in accelerator mass spectrometry (AMS) now allow the measurement of 53 Mn/ 55 Mn ratios as low as 5×10^{-14} [3], thus reducing the mass of sample needed for analysis and making a survey of ⁵³Mn in SNC meteorites feasible.

Experimental Methods: We analyzed 100-to-200-mg samples of six SNC meteorites (Table 1) and 10-to-30 mg samples of several control samples, namely, Dhurmsala (LL6) for ²⁶Al and ¹⁰Be; and Allende (CV3), Bogou (IA), ALH 77250 (IA), and Grant (IIIB) for ⁵³Mn.

After the addition of appropriate carriers stony material was dissolved in HF, HNO₃, and HClO₄ and irons in dilute HNO3. To separate the elements of interest, we evaporated the solution, took up the residue in 1 M HCl, took an aliquot for chemical analysis, added a few drops of 3% H2O2, and evaporated the solution to dryness. We dissolved this residue in 10.2 M HCl, loaded the solution on an anion exchange column, and eluted two fractions: Al + Be + Ni and most Cr^{3+} with 10.2 M HCl; and Mn^{2+} and any remaining Cr³⁺ with 7.1 M HCl. To minimize Cr³⁺, which interferes in subsequent AMS, we purified the Mn-bearing fraction by repeating the foregoing procedure. After evaporation, the residue from the Mn fraction was dissolved in 7 M HNO₃ (ultra pure) and Mn was precipitated as MnO2 on addition of KClO3. The MnO2 was redissolved and precipitated, and dried, first at 110°C and then at 250°C. Procedures for the separation of Be and Al followed [4].

We used AMS to measure ⁵³Mn/⁵⁵Mn ratios at the Technische Universität München [3]. Initially, results were normalized to those for a laboratory standard in which the ⁵³Mn had been produced by a nuclear reaction and its concentration determined by an

inbeam measurement of the deexcitation gamma rays of 53 Mn [5]. A procedural blank gave 53 Mn/ 55 Mn $\leq 1 \times 10^{-12}$ (atom/atom).

The ¹⁰Be/⁹Be and ²⁶Al/²⁷Al ratios were measured at PRIME Lab of Purdue University. We also analyzed several sample aliquots for elemental Mn, Fe, and Ni by ICP-MS.

Results: Elemental Mn and/or Fe contents (mass %) follow: ALH 77005, --, 15.4 \pm 0.8; ALH 84001, 0.369, 14.4 \pm 0.7; EET 79001A, 0.414, 14.9 \pm 0.7; LEW 88516, 0.360, 14.8 \pm 0.5; QUE 94201, 0.354%, 13.8 \pm 0.9; Zagami, --, 17.0 \pm 0.9. The results agree within ~10% with literature values [6] except for Fe in Zagami (17.0 vs. 14.1 [6]). We also measured the Ni and Fe contents (mass %) of Bogou, 7.01 \pm 0.35 and 89.6 \pm 4.5, and of Grant Bar I, 8.71 \pm 0.44 and 88.8 \pm 4.4.

Analyses of ⁵³Mn in control samples gave the following results: ALH 77250, 347±39, 395±26; Bogou (USNM 2245) 351±71, 412±41; Bogou (KN) 368±37, 364±30 all in [dpm/[kg (Fe+1/3Ni)]; Allende [dpm/(kg Fe)], 260±54, 184±65; Grant [dpm/kg], 367±70, 431±43. Literature values in the same units [see 6] are as follows: ALH 77250, 565±22; Allende (3529), 330±31; Bogou, 471±20; Grant, 373±10 (bar I). Except in Grant, our ⁵³Mn activities are systematically lower than published results by a factor of 1.33 ± 0.12 (2 σ ; weighted average; 8 measurements). A review of results for an internal laboratory standard for AMS, Sikhote-Alin (IIB), gave a similar factor of 1.27±0.13. We therefore apply a provisional factor of 1.33 to normalize all 53Mn activities. Recalculated values for the meteorites above are as follows (normalization uncertainty not included): ALH 77250, 493±34; Bogou (USNM 2245), 507±55; Bogou (KN), 487±40; Allende, 295±72; and Grant, 531±57. Two separate Dhurmsala samples each contained 21.2±0.3 dpm ¹⁰Be/kg and 67.6±3.3 and 73.7±2.2 dpm ²⁶Al/kg. Results for ⁵³Mn, ¹⁰Be, and ²⁶Al in SNC meteorites appear in Table 1. The ²⁶Al and ¹⁰Be activities agree well with published results [8-10].

Discussion: Table 1 shows published ³He and ²¹Ne CRE ages, T_3 and T_{21} [1], and CRE ages calculated from measured radionuclide activities corrected for terrestrial age [1]. We omit T_{38} from the compilation because these results tend systematically to be about 15% lower than CRE ages based on ³He and ²¹Ne. Production rates are

Meteorite	EET 79001A	QUE	Zagami	ALH 77005	LEW	ALH
		94201			88516	84001
ID	522	48		21	38	339
²⁶ Al	33.8±3.7	63.4 ± 6.9	97.7±8.5	47.1±2.4	81.8±5.2	70.2 ± 3.0
¹⁰ Be	4.99 ± 0.07	11.9±0.2	$14.6 \pm 0.2^{[8]}$	$16.2 \pm 0.8^{[8]}$	16.2 ± 0.2	21.3±0.3
⁵³ Mn	30±5	162±11	221±16	170±12	279±20	379±33
T _{terr} ^[1]	0.2	0.3		0.2		
D, R (cm)	15,15	25,25	25,25	10,10	25,25	25,6
P ₂₆	72	100	93	49	77	70
P ₁₀	20	21	21	19	22	21
P ₅₃	346	451	451	284	451	376
T ₂₆	0.86 ± 0.21	1.9±0.9				
T ₁₀	0.70 ± 0.06	2.2±0.3	2.5±0.2	4.2±1.3	3.0±0.3	
T ₅₃	0.51±0.10	2.6±0.3	3.6±0.4	5.2±0.8	5.1±0.8	
T ₃ ^[1]	0.61	2.1	2.9	3.8-4.5	4.3	15
T ₂₁ ^[1]	0.65	3.2	3.0	3.2-4.9	4.3	14.2

Table 1: ¹⁰Be, ²⁶Al, (dpm/[kg meteorite]) and ⁵³Mn (dpm/[kg (Fe]) activities and production rates (atom/min/kg or atom/min/[kg Fe]), and CRE ages (T[My]).

calculated from elemental compositions [6] and elemental production rates [11].

EET 79001 – CRE ages from noble gases agree at about 0.6 My. Our ⁵³Mn activity, 30 ± 5 , is lower than reported values of 60-65 dpm/[kg Fe] (see [7]). Estimates of the preatmospheric radius, R, of EET 79001 range from 10 to 15 cm. Assuming that our sample came from a 15 cm body [12] at a depth, D=15 cm, large enough to preclude SCR production, we obtain CRE ages in fair agreement with those based on noble gases. Smaller depth for fixed radius would increase T₂₆, T₁₀, and T₅₃.

 $QUE \ 94201 -$ Nishiizumi and Caffee [8] report 1) ¹⁰Be and ²⁶Al activities similar to ours; and 2) little evidence for the effects of SCR. We assume a sample depth of 25 cm and a meteoroid radius of 25 cm because these choices correspond to normal production rates; smaller depths in bodies with radii of 30 cm to 40 cm give similar results. The various CRE ages are in reasonable agreement.

Zagami – Noble gas CRE ages are close to 3.0 My. Again assuming standard production rates, the ¹⁰Be age based on the analysis of [9] gives a similar result; T_{53} is higher.

ALH 77005 - Solar cosmic ray effects and track data combined with an assumed CRE age of 2.5 My originally suggested a very small preatmospheric radius of 4-6 cm [13] for ALH 77005. Absent SCR effects, GCR production rates in such small objects are depressed: $P_{10}<17$ (¹⁰Be ~saturated) and $P_{53}<200$ atom/min/[kg Fe] [11]. The ⁵³Mn CRE calculated with $P_{53}=200$, ~12 My, is much larger than values

the center of a 25-cm object. T_{53} agrees with the noble gas CRE ages; T_{10} is lower.

based

production,

on

gases, 3-5 My. We therefore assume a somewhat larger but still small body with R=10 cm. As the low ^{26}Al activity in our sample indicates little or no SCR

further assume an interior location. The resulting CRE ages are in the range estimated from the noble gases. A larger radius would raise production rates and lower the CRE ages. *LEW* 88516 – Lacking information about size, we adopt production rates for

noble

we

ALH 84001 - Noble gas CRE ages of ~14 My imply a 4π irradiation long enough to have saturated ¹⁰Be, ²⁶Al and ⁵³Mn. We adopt a radius of 25 cm, which is consistent with the dimensions of the recovered mass, and a depth of 6 cm based on a comparison of ¹⁰Be contents measured by us and by [9]. These choices lead to production rates that agree with the measured activities.

Conclusion: CRE ages of SNC meteorites based on ⁵³Mn activities generally agree with CRE ages based on other cosmogenic nuclides. Shergottite basalts QUE 94201 and Zagami came from a more recent ejection event than did lherzolites ALH 77005 and LEW 88516.

Acknowledgments: We thank R. Michel for the Dhurmsala sample and K. Nishiizumi for Allende USNM 3529, Bogou, and ALH77250.

References: [1] Eugster O. et al. (1997) *GCA*, *61*, 2749-2757. [2] Zipfel J. et al. (2000) *MPS*, *35*, 95-106. [3] Knie K. et al. (2000) *Nucl. Instrum. Meth. Phys. Res B*, *172*, 717-720. [4] Vogt S. and Herpers U. (1988) *Fresenius Z. Anal. Chemie*, *331*, 186-188. [5] Merchel S. et al.. (2000) *Nucl. Instrum. Meth. Phys. Res B 172*, 806-811 [6] Lodders K. (1998) *MPS*, *33*, A183-A190. [7] Nishiizumi K. (1987) *Nucl. Tracks Radiat. Meas.*, *13*, 209-273. [8] Nishiizumi K. and Caffee M. (1996) *LPS*, *XXVII*, 961-962. [9] Nishiizumi K. et al. (1994) *Meteoritics 29*, 511. [10] Neupert U. (1996) Ph.D. thesis, Univ. Hannover. [11] Leya I. et al. (2000) *MPS*, *35*, 259-286. [12] Nishiizumi K. et al. (1986) *GCA*, *50*, 1017-1021. [13] Bhandari N. et al. (1993) *GCA*, *57*, 2361-2375.