IRON-60 ACTIVITIES OF CANYON DIABLO, GRANT, AND DOROFEEVKA

E.L. Berger¹, T. Faestermann², G.F. Herzog¹, K. Knie^{2, †}, G. Korschinek², I. Leya³, and F. Serefiddin¹, ¹Dept. Chem., Rutgers U. Piscataway NJ 08854-8087. herzog@rutchem.rutgers.edu. ²Fakultät für Physik, Technische Universität München, D-85748, Garching, Germany. ³Physikalisches Inst., CH 3012 Bern, Switzerland.

Introduction: In meteoroids, cosmic rays produce the β^{-} emitter ⁶⁰Fe (t_{1/2}=1.5 Ma) mainly through nuclear reactions with the minor isotopes of nickel. Even in nickel-rich iron meteorites, however, ⁶⁰Fe production rates are low and only a few measurements of ⁶⁰Fe activities have been reported to date [1]. The utility of ⁶⁰Fe in interpreting cosmic-ray exposure histories depends on understanding its production rate systematics. To contribute toward such an understanding, we have measured the activities of ⁶⁰Fe in six samples representing a large range of shielding conditions in three iron meteorites.

Experimental methods: Samples with masses of ~100 mg were dissolved in HCl. Iron was separated by ion exchange and precipitated as the hydroxide. Ratios (atom/atom) of 60 Fe to Fe were measured by accelerator mass spectrometry (AMS) [1].

Results and discussion: Table 1 shows measured ⁶⁰Fe activities; Ni contents are from the literature. Published activities (dpm/[kg Ni]) range from ~0.7 for metal from chondrites to 2.0 ± 0.6 for a 2.5-kg(!) sample of Odessa [see 1,2].

Production rates of spallogenic nuclides such as ³He, ¹⁰Be, ²¹Ne, and ³⁶Cl generally decrease with increasing depth in large iron meteorites, [e.g., 3] as we also find for ⁶⁰Fe in Canyon Diablo. With sample depths based on [4], we obtain a half thickness of 11.5 ± 5.0 cm for ⁶⁰Fe. In contrast, modeling calculations for iron meteoroids with radii <40 cm [1] predict an increase with depth of ~30% in the production of ⁵³Mn and ⁶⁰Fe. If we use for Grant the size and the depth scale proposed in [5], our ⁶⁰Fe activities for O +10 and K -47 (distances from center 28.6 cm and 19.0 cm, respectively) confirm an increase of ⁶⁰Fe with depth, although uncertainties are appreciable. Dorofeevka's small recovered mass (12.6 kg) and rather high ¹⁰Be and ²⁶Al activities [6] indicate relatively light shielding. Its ⁶⁰Fe activity is consistent with these observations.

References: [1] Knie K. et al., 1999. *M&PS* 32:729-734. [2] Goel P.S. and Honda M., 1965. *JGR*. 70:747-748. [3] Kohman T.P. and Bender M.L., 1967. In: *High-energy Nuclear Reactions in Astrophysics*. W.A. Benjamin, pp. 169-245. [4] Michlovich E.S. et al., 1994. *JGR-Planets* 99:23,187-23,194. [5] Ammon K. and Leya I., 2006. Abstract #1556. 37th LPSC. [6] Xue S. et al., 1995. *EPSL* 136:397-406.

Sample	Counts	Ni	Activity
Canyon Diablo			
266	9	6.91	0.84±0.36
4340	3	6.98	0.11±0.09
4367	7	6.98	0.41 ± 0.20
Grant 836			
O+10	30	9.29	1.01 ± 0.20
K-47	28	9.29	1.21±0.25
Dorofeevka	50	11.3	0.99±0.15

Table 1. Activities of ⁶⁰Fe (dpm/[kg Ni]) in iron meteorites.