⁶⁰Fe, ¹⁰Be, AND ²⁶Al IN LUNAR CORES 12025/8 AND 60006/7: SEARCH FOR A NEARBY SUPERNOVA. D.L. Cook^{1,2}, E. Berger^{1,3}, T. Faestermann⁴, G.F. Herzog¹, K. Knie^{4,5}, G. Korschinek⁴, M. Poutivtsev⁴, G. Rugel⁴, and Serefiddin F.^{1,6} ¹Chem. & Chem. Biol., Rutgers U., Piscataway, NJ 08854, ²Earth Sci., U. Oxford, Oxford, OX1 3PR, UK, <davec@earth.ox.ac.uk>, ³U. Arizona, Tucson, AZ, USA, ⁴Fakultät für Physik, TU-München, D-85748, Garching, Germany, ⁵GSI, Darmstadt, Germany, ⁶Div. Phys. Sci., Cuesta College, San Luis Obispo, CA 93403.

Introduction: We searched two lunar cores for ⁶⁰Fe produced by a supernova event. Ref. [1] attributed a spike of 60 Fe ($T_{1/2}$ =1.49 Ma) found in a narrow layer milled from a deep-sea FeMn crust to supernova debris deposited ~ 2 Ma ago. Ref. [2] confirmed these results for the crust but found no evidence for a ⁶⁰Fe spike in North Atlantic sediment. We reasoned that the lunar surface deserved consideration as a supernova debris collector because on the Moon 1) the net sedimentation rate is negligible (sedimentation dilutes the ⁶⁰Fe signal in terrestrial deposits); and 2) concentrations of the Ni isotopes responsible for interfering. spallogenic production of ⁶⁰Fe are low. On the other hand, stochastic impacts garden the lunar surface (e.g., [3]). We sought to minimize gardening effects by choosing soil cores with smooth ⁵³Mn profiles, namely 12025/8 and 60006/7 [4,5].

Experimental methods: For ⁶⁰Fe, 17 carrier-free samples were dissolved in HF. Iron was extracted into diisopropyl ether, back extracted with HCl, and precipitated twice as the hydroxide. A subset of twelve samples were also analyzed for ¹⁰Be and ²⁶Al; separate sample masses of 9-20 mg were dissolved after the addition of Be (~2.5 mg) and Al (~9 mg) carriers. Be and Al were separated by ion exchange, precipitated as the hydroxides, and ignited to the oxides. We used accelerator mass spectrometry to measure isotope ratios, ⁶⁰Fe/Fe at the Beschleunigerlaboratorium der Ludwig-Maximilians-Universität und Technischen Universität München in Garching, Germany [6], and ¹⁰Be/⁹Be and ²⁶Al/²⁷Al at PRIMELab of Purdue U.

Results and discussion: The ²⁶Al, ¹⁰Be, and ⁶⁰Fe activities of the samples are shown in Table 1 and Figs. 1 and 2. The ²⁶Al activities agree fairly well with literature values (Fig. 1; [7-9]). Except for 60007,515 the ¹⁰Be activities (dpm/kg) of both cores lie in the range 11.7-14.1 with an average of 13.5 ± 1.0 , which may be compared with a surface activity of 11.5 for 68815 [10], or of 11.8 for 74275 after corrections of 1.8 for pre-exposure and a factor of 1.38 for undersaturation [9].

Fitoussi et al. [2] estimated a maximum local fluence of 1×10^8 (atom ⁶⁰Fe) cm⁻² at the time that supernova debris passed through the solar system ~2 Ma ago. With diameters of 2 cm, the cores studied would have collected at most 3×10^8 atom ⁶⁰Fe while on the Moon. Were all the ⁶⁰Fe to have been mixed uniformly down to the bottoms of the topmost samples 12025,358 (0.4 cm; 2.4 g; 13.3 wt% Fe) and 60007,517 (3.3 cm, 15.6 g; 3.3 wt% Fe), respectively, then we calculate 60 Fe/Fe ratios expected today, *i.e.*, after 2.1 Ma of decay, of 3.4×10^{-14} and 2.1×10^{-14} . These values are about 9 to 15 times larger than observed (Table 2).

We compared the measured ⁶⁰Fe concentrations with values expected from cosmic-ray activation. In iron meteorites, galactic cosmic-rays (GCR) produce ⁶⁰Fe at a rate, P_{60-GCR}, of ~ 1.5 dpm/[kg Ni], primarily through reactions of secondary protons and neutrons with the less abundant isotopes of Ni [6,11,12]. This estimate omits possible GCR contributions from ⁵⁸Fe(α ,X)⁶⁰Fe. All five 60006/7 samples have ⁶⁰Fe activities comparable to (within 95% confidence limit (CL)) the GCR value. Eleven of the 12025/8 samples have an activity of zero but are within the CLs of the GCR value. However, the topmost sample (12025,358) has significantly higher activity than expected for GCR.

We evaluated the possibility that solar cosmic ray irradiation produced some of the ⁶⁰Fe observed in surface samples 60007,517 and 12025,358. With the TALYS code we calculated cross sections for the nuclear reactions $^{nat}Fe(\alpha, X)^{60}Fe$, $^{nat}Ni(p, X)^{60}Fe$, and ^{nat}Ni(αX)⁶⁰Fe (Fig. 3). We adopted a proton flux $(p/cm^2 s^{-1})$ of $J_p(R) (p/cm^2) = 3.5 \exp(-R/R_a)$ with the rigidity $R(MV) \approx 43.3 \sqrt{E_n(MeV)}$, $R_0 = 100$ MV, and $J_{\alpha}(R) = 0.037 J_{\rm p}(E_{\rm p}/4)$. The results for the production of ⁶⁰Fe by particles for $1 \le E_p \le 100$ MeV, from the surface down to depths where production reaches zero, are shown in Fig. 2. No measurable ⁶⁰Fe production from SCR is predicted at the depth of sample 60007,517. Although production of ⁶⁰Fe by SCR is greatest at the surface, it apparently cannot account for the observed activity in sample 12025,358 which exceeds the predicted SCR value by a factor of ≈ 54 .

As the ⁶⁰Fe activity in sample 12025,358 seems inconsistent with production by GCR and SCR, the signal may be due to the deposition of debris from a nearby SN, similar to that observed in a terrestrial FeMn crust by [1] and [2]. The discrepancy between the observed and predicted activities discussed above could result from an overestimation of the ⁶⁰Fe fluence by [2]. Alternatively, sample 12025,837 may not have recorded the full expected signal if the deposition of the SN debris occurred at an angle oblique to the plane of the ecliptic, or we may not have sampled the portion of the core containing the entirety of the debris. Additional analyses of ⁶⁰Fe in near-surface samples of 12025 and 60007 would be desirable.

References: [1] Knie K. et al. (2004) Phys. Rev. Lett. 93, 171103-1 - 117103-4. [2] Fitoussi C. et al. (2008) Phys. Rev. Lett., 101, 121101. [3] McKay D.S. et al., (1991) In: Lunar Sourcebook Cambridge Univ. Press, 285-356. [4] Nishiizumi K. et al. (1976) Proc. Lunar Sci. Conf., 7, 41-54. [5] Nishiizumi K. et al. (1979) EPSL, 44, 409-414. [6] Knie K. et al. (1999) M&PS, 34, 729. [7] Fruchter J. S. et al. (1976) Proc. Lunar Sci. Conf., 7, 27-39. [8] Rancitelli L. et al. (1971) Proc. Lunar Sci. Conf., 2, 1757-1792. [9] Fink et al. (1998) GCA, 62, 2389-2402. [10] Nishiizumi K. et al. (1988) Proc. Lunar Sci. Conf. 18, 79-85. [11] Berger E. et al. (2007) M&PS, 42, A18. [12] Nishiizumi K. and Honda M. (2007) M&PS, 42, A118. [13] Meyer C. Jr., et al. (1971) Proc Lunar Sci. Conf. 2, 393-411. [14] Nava D.F. and Philpotts J.A. (1973) GCA, 37, 963-973. [15] Merchel S. et al. (2000) NIM B, 172, 806-811.

Table	1
-------	---

Sample	Depth	²⁶ Al	¹⁰ Be
1	cm	dpm/kg	dpm/kg
12025,358	0.20	213±13	13.4±0.7
12025,359	0.80		12.9 ± 0.7
12025,360	1.45	159±12	13.9±0.8
12025,357	2.10	98±6	12.8±0.6
12025,356	2.90	80±6	14.1 ± 0.8
12025,355	3.65	68±4	13.1±0.7
12028,837	38.7	44±3	11.7±0.7
60007,517	3.3	133±7	13.3±0.4
60007,516	7.3	112±7	13.7±0.7
60007,515	13.3	68±5	$16.0{\pm}1.0$
60007,514	18.3	72±5	$13.0{\pm}1.1$
60006,418	31.8	66±4	13.9±0.8
$T_{1/2}^{10}Be = 1.2$	36 Ma; T _{1/2}	$^{26}Al = 0.705$ Ma.	An apparent

switch in the ${}^{10}\text{Be}/{}^9\text{Be}$ ratios of ,355 and ,356 was corrected.

Table 2.					
Sample	Depth	⁶⁰ Fe/Fe	⁶⁰ Fe	⁶⁰ Fe	
1	cm	[a]	[b]	[c]]	
12025,358	0.2	$3.6^{+2.5}_{-1.5}$	$4.6^{+3.2}_{-1.9}$	24^{+17}_{-10}	
60007,517	3.3	$1.4_{-0.5}^{+0.7}$	$0.44_{-0.17}^{+0.21}$	$1.6^{+0.8}_{-0.6}$	
60007,516	7.3	$1.5^{+1.1}_{-0.9}$	$0.46_{-0.29}^{+0.35}$	$1.7^{+1.3}_{-1.1}$	
60007,515	13.3	$2.3\substack{+1.6\\-1.0}$	$0.73\substack{+0.51 \\ -0.30}$	$2.7^{+1.9}_{-1.1}$	
60007,514	18.3	$1.2^{+0.7}_{-0.6}$	$0.39\substack{+0.22\\-0.17}$	$1.4_{-0.6}^{+0.8}$	
60006,418	31.8	$0.7^{+0.4}_{-0.3}$	$0.22\substack{+0.13 \\ -0.10}$	$0.8\substack{+0.5 \\ -0.4}$	
[a] 10^{-15} atom ⁶⁰ Fe/[atom Fe]. [b] $(10^{-3} \text{ dpm }^{60}\text{Fe})/(\text{kg soil})$					
with 13.3 wt%	Fe for	12025/8 [13	3] and 3.3 w	t% Fe for	

with 13.3 wt% Fe for 12025/8 [13] and 3.3 wt% Fe for 60006/7 [14]. [c] dpm 60 Fe/(kg Ni) with 189 ppm Ni for 12025/8 and 272 ppm Ni for 60006/7.